🔐
SecWiki
  • Home
  • General
    • Interesting Links
      • Curriculum
    • Pentest Labs, Wargames Sites
      • How To Vulnhub with VirtualBox
  • Network Pentest
    • Courses
      • TCM - Zero to Hero
        • Week 1: Setup
          • ipsweep.sh
        • Week 2: Python 101
          • python101.py
          • bof.py
        • Week 3: Python 102
          • python102.py
          • scanner.py
        • Week 4: Passive OSINT
        • Week 5: Scanning Tools & Tactics
          • nmap
          • Nessus
          • msfconsole
        • Week 6: Enumeration
        • Week 7: Exploitation, Shells, and Some Credential Stuffing
        • Week 8: LLMNR/NBT-NS Poisoning
        • Week 9: NTLM
        • Week 10: MS17-010, GPP/cPasswords, and Kerberoasting
        • Week 11: File Transfers, Pivoting, Reporting
        • Commands
      • Penetration Testing Student (PTS)
      • OSCP Study
    • Recon
      • OSINT
    • Enumeration
      • Samba Shares
      • ProFtpd
    • Gaining Access
      • Reverse Shells
    • Privilege Escalation
      • Meterpreter
      • Spawning a TTY Shell
      • Reverse Shell Cheat Sheet
      • Cracking Hashes
      • Restricted Linux Shell Escape
      • Linux Privilege Escalation
        • lxd
        • sytemctl
      • Windows Privilege Escalation
        • Active Directory
          • What is AD?
        • User Enumeration
    • Post Exploitation
      • Cleanup
      • Maintaining Access
      • Pivoting
      • File Transfers
      • Covering Tracks
    • Vulnerabilities Checklist
    • Report Writing
  • Web App Pentest
    • Tools
      • Burp Suite
      • THC-Hydra BruteForce
    • Injection
      • SQL Injection
    • Broken Authentication
    • Sensitive Data Exposure
      • SQLite3
    • XML External Entity
      • XML Background
      • XPath Injection
    • Broken Access Control
    • Security Misconfiguration
    • Upload/Download
      • Download Bypass: Poison Null Byte
    • XSS
      • DOMXSS
      • Persistent XSS
      • Reflected (Client-side) XSS
      • Data URLs
    • Insecure Deserialization
    • Components with Known Vulnerabilities
    • Insufficient Logging and Monitoring
    • Server-Side Request Forgery (SSRF)
  • CTF
    • Intro to CTF
    • Forensics
      • Challenges
    • Steganography
    • Reverse Engineering
    • Tools
  • Network Security
    • Courses
      • Sec+
      • IBM Cybersecurity Analyst Professional Certificate
      • ISCI CNSS Course
        • Introduction to Network Security
          • Network Basics
          • Basic Network Utilities
          • The OSI Model
          • Threat Classification
          • Security Terminology
          • Approaches of Network Security
          • Law and Network Security
        • Types of Attacks
          • Denial of Service Attacks
          • Buffer Overflow Attacks
          • IP Spoofing
          • Session Hijacking
        • Fundamentals of Firewalls
          • What is a Firewall
          • Firewall Types
          • Firewall Implementation
          • Proxy Servers
          • Windows Firewalls
          • Linux Firewalls
        • Intrusion-Detection Systems
          • IDS Concepts
          • Components and Processes of IDS
          • Implementing IDS
          • Honeypots
        • Fundamentals of Encryption
          • The History of Encryption
          • Modern Encryption Methods
          • Windows and Linux Encryption
          • Hashing
          • Cracking Passwords
        • Virtual Private Networks (VPN)
          • Introduction to VPN
          • VPN Protocols
          • IPSec
          • SSL/TLS
          • VPN Solutions
        • Operating System Hardening
          • Configuring Windows
          • Configuring Linux
          • Operating System Patches
        • Virus Attacks and How to Defend
          • Virus Types and Attacks
          • Virus Scanners
          • Antivirus
          • Virus Infection and Identification
          • Trojan Horses
          • Spyware or Adware
        • Security Policies
          • User Policies Definition
          • System Administration Policies
          • Access Control
        • Assessing System Security
          • Risk Assessment
          • Conducting an Initial Assessment
          • Probing the Network
          • Vulnerabilities
          • Documenting Security
        • Security Standards
          • ISO Standards
          • NIST Standards
          • General Data Protection Regulation (GDPR)
          • PCI DSS
        • Physical Security and Recovery
          • Physical Security
          • Disaster Recovery
          • Fault Tolerance
        • Attackers Techniques
          • Hacking Preparation
          • The Attack Phase
          • Hacking Wi-Fi
    • The Web
    • The OSI Model
    • Malware Traffic Analysis with Wireshark
  • Digital Forensics
    • Autopsy - open-source digital forensics platform
  • Exploit Dev/Analysis
    • Code Review
      • Tools
    • Buffer Overflows
    • Static Analysis
      • Antivirus Scanning
      • Hashing
      • File strings
      • Packed and Obfuscated Malware
        • Demo: UPX
      • Portable Executable File Format (PE)
        • Tools
        • Linked Libraries and Functions
        • PE File Headers and Sections
  • Shell
    • ./missing-semester
      • Course overview + the shell
      • Shell Tools and Scripting
      • Editors (Vim)
      • Data Wrangling
      • Command-line Environment
    • Bash Tricks
    • .bashrc
    • Random Commands
      • sed
  • Hardware
    • NAND2Tetris
      • Boolean Functions and Gate Logic
      • Boolean Arithmetic and the ALU
      • Memory
      • Machine Language
      • Computer Architecture
      • Assembler
  • Other
    • K8s
      • Chapter 1: From Monolith to Microservices
      • Chapter 2: Container Orchestration
      • Chapter 3: Kubernetes
      • Chapter 4: Kubernetes Architecture
Powered by GitBook
On this page
  • John the RIpper
  • Rainbow Tables
  • Brute Force

Was this helpful?

  1. Network Security
  2. Courses
  3. ISCI CNSS Course
  4. Fundamentals of Encryption

Cracking Passwords

Cracking passwords is not the same as breaking encrypted transmissions. If anyone has successfully cracked a password and particularly the administrator/root password then other security measures are rendered irrelevant.

John the RIpper

John the Ripper works with password files rather than attempting to crack live passwords on a given system. Passwords are usually encrypted and in a file on the operating system. Hackers frequently try to get that file off the machine and download it to their own system so they can crack it at will. They might also look for discarded media in your dumpster in order to find old backup tapes that might contain password files. Each operating system stores that file in a different place:

  • In Linux, it is /etc/passwd and /etc/shadow.

  • In Windows 2000 and beyond, it is in a hidden .sam file.

After you have downloaded John the Ripper, you can run it by typing in (at a command line) the word john followed by the file you want it to try to crack:

  • john passwd

  • john –wordfile:/usr/share/wordlists/rockyou.txt –rules passwd Cracked passwords will be printed to the terminal and saved in a file called john.pot, found in the directory into which you installed John the Ripper.

Rainbow Tables

In 1980 Martin Hellman described a cryptanalytic time-memory trade-off that reduces the time of cryptanalysis by using pre-calculated data stored in memory. Essentially, these types of password crackers are working with pre-calculated hashes of all passwords available within a certain character space, be that “a-z” or “a-zA-z” or “a-zA-Z0-9” etc. These files are called rainbow tables. They are particularly useful when trying to crack hashes. Because a hash is a one-way function, the way to break it is to attempt to find a match. The attacker takes the hashed value and searches the rainbow tables seeking a match to the hash. If one is found, then the original text for the hash is found. Popular hacking tools such as Ophcrack depend on rainbow tables.

Brute Force

This method simply involves trying every possible key. It is guaranteed to work, but is likely to take so long that it is simply not useable. For example, to break a Caesar cipher there are only 26 possible keys, which you can try in a very short time. But consider AES, with the smallest key size of 128 bits. If you tried 1 trillion keys a second, it could take 112,527,237,738,405,576,542 years to try them all.

PreviousHashingNextVirtual Private Networks (VPN)

Last updated 4 years ago

Was this helpful?